skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Kim, Yousoo"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available June 10, 2026
  2. Free, publicly-accessible full text available February 20, 2026
  3. Abstract A detailed understanding of the dissociation of O2molecules on metal surfaces induced by various excitation sources, electrons/holes, light, and localized surface plasmons, is crucial not only for controlling the reactivity of oxidation reactions but also for developing various oxidation catalysts. The necessity of mechanistic studies at the single‐molecule level is increasingly important for understanding interfacial interactions between O2molecules and metal surfaces and to improve the reaction efficiency. We review single‐molecule studies of O2dissociation on Ag(110) induced by various excitation sources using a scanning tunneling microscope (STM). The comprehensive studies based on the STM and density functional theory calculations provide fundamental insights into the excitation pathway for the dissociation reaction. 
    more » « less
  4. Abstract Chemical reactions induced by plasmons achieve effective solar‐to‐chemical energy conversion. However, the mechanism of these reactions, which generate a strong electric field, hot carriers, and heat through the excitation and decay processes, is still controversial. In addition, it is not fully understood which factor governs the mechanism. To obtain mechanistic knowledge, we investigated the plasmon‐induced dissociation of a single‐molecule strongly chemisorbed on a metal surface, two O2species chemisorbed on Ag(110) with different orientations and electronic structures, using a scanning tunneling microscope (STM) combined with light irradiation at 5 K. A combination of quantitative analysis by the STM and density functional theory calculations revealed that the hot carriers are transferred to the antibonding (π*) orbitals of O2strongly hybridized with the metal states and that the dominant pathway and reaction yield are determined by the electronic structures formed by the molecule–metal chemical interaction. 
    more » « less